E Why deep nets can classity images living in high dimension?

RELATIVE STABILITY TOWARD DIFFEOMORPHISMS
INDICATES PERFORMANCE IN DEEP NETS

E Do they do so by becoming stable to diffeomorphisms?

E Previous empirical works are in support of a negative answer to (2.)

We revisit this question by
ﬂ defining a maximume-entropy distribution on diffeomorphisms
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o finding that the stability toward diffeomorphisms relative to that of

generic transformations Ry shows robust empirical behaviors across
architectures and datasets.

RELATIVE STABILITY _iage — We conclude that relative diffeomorphisms stability

7 smooth deformation ﬂ builds up with training in SOTA nets

MAX-ENTROPY DIFFEOMORPHISMS

Goal: establish if a deep net learns to become

Goal: define a distribution of typical diffeomorphisms of controlled magnitude. more stable to diffeomorphisms than to a ge- Z iSOtUOpLCf”OiSf s important for obtaining good performance
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Relative stability shows a striking correlation with performance!

The deformation amplitude is measured by: FallConnL?

] CIFARlO @) FulnggnLG
1 nets performance vs relative diffeo stability FullConnL4

2 __ 2 2
V7| _/[O 1]2(V7-u) + (V7)” dudv. (1) 30%41 (test error)

O LeNet

We write each of the displacement fields in real Fourier basis and fix the picture
frame not to be deformed (ie. 7, =7, =0 ifu=0,10r v=0,1):
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To determineit, we inject (2) into (1) and get: —— ——————
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