LEARNING SPARSE FEATURES CAN LEAD TO
OVERFITTING IN NEURAL NETWORKS

L eonardo Petrini*®,  Francesco Cagnetta®®, Eric Vanden-Eijnden®, Matthieu Wyart®

leonardo.petrini@epfl.ch francesco.cagnetta@epfl.ch
@leopetrini_

m Common idea: deep nets success is in their ability to learn data features;
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GENERALIZATION ERROR ASYMPTOTICS

In the setting we introduced, we characterize the asymptotic decay of the generaliza-
tion error with the number of training points averaged over realization of the target

unction () =By | [dri @) (7(2) — (@) = A +o(n ")

where the predictor f™(x), for both regimes, can be casted as a convolution on Sa—1

s learning features actually good for performance? In image tasks:
‘-;- Yes for convolutional nets (CNNs) but ‘;= No for full conn. nets (FCNs)

We propose an explanation for this puzzle:

, . O(n)
Feature learning can perform worse than lazy training as it leads to , . dr uniform measure on the sphere
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a sparser neural representation. =1 Sd—1 g™(x) = 3, [S" Mgz — ;)

| Sparse representations are detrimental when the target function is which becomes a product in the basis of spherical harmonics: e = g ¢k

The predictor for the test error decay B relies on the spectral bias ansatz: for the first
n modes, the predictor fi, coincides with the target function fz¢ and the test error

constant / smooth along some input-space directions.
E We illustrate this is (i) regression of Gaussian random functions on the
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 Figure 1: Test error vs. training-set size of infinite-width FCNs trained on image classification | N U M E RI CAL TESTS O F TH E TH EO RY

We find good agreement between our theory and the training of a neural network with

RAN DOM FUNCTIONS ON THE SPHERE oradient descent and small regularization or the alpha-trick [2].
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Figure 2: data samples
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which determines the target smoothness in real space ¢ .oothness
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NEURAL NETS TRAINING REGlMES

Figure 6: generalization error for a smooth target function, theory vs experiments.

OVERFITTING IN IMAGE DATASETS

d= 3 Vy — H@

Spherical Task

We consider a one-hidden-layer ReLU net of width H.: { " Smooth target along non—li.nearinput@irgctions—»feature adaptation| .f ..,
Ve fwt, leads to sparse representation = overfitting. / :
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S (@)= g1-£/2 Z (,whg(gh ) = g?‘f@‘f(‘?h ) i -W.>.ﬁ (@) Does this picture hold for images? We argue yes because: Ul SR
Inetwork predictor h=1 weights nitialization params | \:/ (i) the features distribution becomes sparse T
optimized params e e (ii) the predictor of the feature regime is less smooth along directions| ~ cmn
where & controls the training regime, i.e. it is zero in the feature regime and one in the for which the target should vary smoothly [3], i.e. diffeomorphisms.
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lazy regime such that we get well-defined H — oo limits:

1mj

-5
» Feature regime. In this regime we get the so-called mean-field limit:  ferepedco=e |l | 2" \MNIST s
o i -

lim f570(z) = /S ~ 0(6,2)dy(8)  ac ons'

\Radon measure

F-MNIST

9PC2
o
L
1
E“ L
8 L
e

CIFAR10 _ R

10" -

e 2 4
QPCl

\) W = (=]

Feature 10 Feature

] r x 1004 Feature __\
——  Lazy ——  Lazy —— Lazy

102 10° 10* 102 10° 10* 102 10° 10*
trainset size, n trainset size, n trainset size, n

 Figure 8: Measure of the smoothness of the predictor along diffeomorphims.

CONCLUSIONS AND FUTURE WORK

- Learning features is detrimental if task is invariant / smooth along transforma-
tions that are not captured by the network architecture;

Figure 7: features distribution
in the two regimes.

and the optimal 7y having minimal norm is determined by

v" = arg min/ |dy(0)| subject to / g(0-x;)dv(0)=f"(x;) Vi=1,...,n.
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Notice that this is equivalent to Lasso regression and hence the solution is unique and
sparse (i.e. supported on A < M neurons) with probability 1. The predictor reads,

- « Our analysis relies on the sparsity of the feature solution;
FrEATORE (@) =N wio (6] - ). . We provide test error decay predictions that we verify; this kind of results are scarce;
i=1 » May questions are still open. Understanding the feature regime in modern archi-

. , o tectures: how do CNNs perform well in the feature regime? Does sparsity help?
» Lazy Regime. In this case we get the Neural Tangent Kernel (NTK) [1] limit where the

neural network training correspond to kernel regression with the NTK and the predictor Preprint:  arXiviXXX.XXXX.

takes the form, n l, 5 109 Code: cithub.com/pcsl-epfl/regressionsphere
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