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Figure 3: Generalization error for a constant function f∗(x) = 1. Test error as a function of the
training set size n for a network trained in the feature regime with L1 regularization (blue) and kernel
regression corresponding to the infinite-width lazy regime (orange). Numerical results (full lines) and
the exponents predicted by the theory (dashed) are plotted. Panels correspond to different input-space
dimensions (d = 2, 3, 5). Results are averaged over 10 different initializations of the networks and
datasets. For d = 2 and large n, the gap between experiments and prediction for the feature regime
is due to the finite training time t. Indeed our predictions become more accurate as t increases, as
illustrated in the left.

For νt > 2, one has
∑

j g
2
j ∼ 1

n limn→∞
∫
gn(x)2dx ∼ 1

n . It follows (see App. E for details) that
the sum is dominated by the first term, hence entirely controlled by the Fourier coefficients of fn(k)
at large k. A smoother predictor corresponds to a faster decay of fn(k) with k, thus a faster decay of
the error with n. Plugging the relevant decays yields ε ∼ n−4 for feature regime and lazy regime
with the NTK, and n−6 for lazy regime with the RFK (which is smoother than the NTK). For νt ≤ 2,
the two terms have comparable magnitude, see App. E. It follows immediately that ε ∼ n−2νt .

Generalization to higher dimensions The argument above can be generalised for any d by
replacing Fourier modes with projections onto spherical harmonics. The characteristic distance
between training points scales as n−1/(d−1), thus kc ∼ n−1/(d−1). Our ansatz is that, as in d=2:
i) for k � kc, the predictor modes coincide with those of the target function, fn

k,l ≈ f∗
k,l (this

corresponds to the spectral bias result of kernel methods, stating that the predictor reproduces the
first O(n) projections of the target in the kernel eigenbasis [35]); ii) For k � kc, gnk,l is a sum of
uncorrelated terms, thus a Gaussian variable with zero mean and fixed variance; iii) fn

k,� = gnk,�ϕ̂k

decorrelates from f∗
k,� for k � kc. i), ii) and iii) imply that:

ε(n) ∼
∑
k≥kc

Nk,d∑
l=1

(
fn
k,l − f∗

k,l

)2 ∼
∑
k≥kc

Nk,d∑
l=1

(
〈(gnk,l)2〉ϕ2

k + k−2νt−(d−1)
)
. (3.8)

As shown in App. E, from this expression is is straightforward to obtain Eq. 3.4. Notice again that
when the target is sufficiently smooth, so that the predictor-dependent term dominates, the error is
determined by the smoothness of the predictor. In particular, as d> 2, the predictor of feature learning
is less smooth than both the NTK and RFK ones, due to the slower decay of the corresponding ϕk.

4 Numerical tests of the theory

We test successfully our predictions by computing the learning curves of both lazy and feature
regimes when (i) the target function is constant on the sphere for varying d, see Fig. 3, and (ii)
the target is a Gaussian random field with varying smoothness νt, as shown in Fig. G.1 of App. G.
For the lazy regime, we perform kernel regression using the analytical expression of the NTK [42]
(see also Eq. A.19). For the feature regime, we find that our predictions hold when having a small
regularization, although it takes unreachable times for gradient descent to exactly recover the minimal-
norm solution—a more in-depth discussion can be found in App. G. An example of the atomic
distribution of neurons found after training, that contrasts with the initial distribution, is displayed in
Fig. 4a, left panel.

Another way to obtain sparse features is to initialize the network with very small weights [13], as
proposed in [7]. As in the presence of an infinitesimal weights decay, this scheme also leads to
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Overfitting in Feature Learning

Numerical experiments are performed in PyTorch [29], and the code for reproducing experiments is
available online at github.com/pcsl-epfl/regressionsphere.

1.2 Related Work

The property that training ReLU networks in the feature regime leads to a sparse representation was
observed empirically [30]. This property can be justified for one-hidden-layer networks by casting
training as a L1 minimization problem [31, 2], then using a representer theorem [32, 14, 33].

There is currently no general framework to predict rigorously the learning curve exponent β defined
as ε(n) = O(n−β) for kernels. Some of our asymptotic arguments for can be obtained by other
approximations, such as assuming that data points lie on a lattice in Rd [34], or by using the non-
rigorous replica method of statistical physics [35–37]. In the case d = 2, we provide a more explicit
mathematical formulation of our results, which leads to analytical results for certain kernels. We
systematically back up our predictions with numerical tests as d varies.

Finally, in the context of image classification, the connection between performance and ‘stability’ or
smoothness toward small diffeomorphisms of the inputs has been conjectured by [28, 38]. Empirically,
a strong correlation between these two quantities was shown to hold across various architectures
for deep networks and real datasets [39]. In that reference, it was found that during training fully
connected networks lose their stability. Here we show that this effect is much less pronounced in the
lazy regime.

2 Problem and notation

Task We consider a supervised learning scenario with n training points {xi}ni=1 uniformly drawn
on the d-dimensional unit sphere Sd−1. We assume that the target function f∗ is an isotropic Gaussian
random process on Sd−1 and control its statistics via the spectrum: by introducing the decomposition
of f∗ into spherical harmonics (see App. A for definitions),

f∗(x) =
∑
k≥0

Nk,d∑
�=1

f∗
k,�Yk,�(x) with E

[
f∗
k,�

]
= 0, E

[
f∗
k,�f

∗
k′,�′

]
= ckδk,k′δ�,�′ . (2.1)

We assume that all the ck with k odd vanish apart from c1: this is required to guarantee that f∗ can be
approximated as well as desired with a one-hidden-layer ReLU network with no biases, as discussed
in App. A. We also assume that the non-zero ck decay as a power of k for k � 1, ck ∼ k−2νt−(d−1).
The exponent νt > 0 controls the (weak) differentiability of f∗ on the sphere (see App. A) and also
the statistics of f∗ in real space:

E
[
|f∗(x)− f∗(y)|2

]
= O

(
|x− y|2νt

)
= O ((1− x · y)νt) as x → y. (2.2)

Neural network representations We consider a one-hidden-layer neural network of width H ,

fξ
H(x) =

1

H1−ξ/2

H∑
h=1

(
whσ(θh · x)− ξw0

hσ(θ
0
h · x)

)
, (2.3)

where {θh}Hh=1 (the features) and {wh}Hh=1 (the weights) are the network parameters to be optimized,{
θ0
h

}H

h=1
and

{
w0

h

}H

h=1
are their values at initialization, ξ is a parameters fixed to ξ = 0 for feature

learning and ξ = 1 for lazy training, and σ(x) denotes the ReLU function, σ(x)=max {0, x}. We
assume that

{
θ0
h, w

0
h

}H

h=1
are drawn independently from a distribution µ0 with the properties that: all

moments of µ0 exist; µ0 is absolutely continuous with respect to the Hausdorff measure on Sd−1×R;
and µ0 is centered, i.e.

∫
Sd−1×R θdµ0(θ, w) = 0 and

∫
Sd−1×R wdµ0(θ, w) = 0.

Feature Regime (ξ = 0) If we assume that {θh, wh}Hh=1 are independently drawn from a prob-
ability measure µ on Sd−1 × R such that the Radon measure γ =

∫
R wµ(·, dw) exists, then as

H → ∞
lim

H→∞
fξ=0
H (x) =

∫

Sd−1

σ(θ,x)dγ(θ) a.e. on Sd−1. (2.4)
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Overfitting in Feature Learning

Numerical experiments are performed in PyTorch [29], and the code for reproducing experiments is
available online at github.com/pcsl-epfl/regressionsphere.

1.2 Related Work

The property that training ReLU networks in the feature regime leads to a sparse representation was
observed empirically [30]. This property can be justified for one-hidden-layer networks by casting
training as a L1 minimization problem [31, 2], then using a representer theorem [32, 14, 33].

There is currently no general framework to predict rigorously the learning curve exponent β defined
as ε(n) = O(n−β) for kernels. Some of our asymptotic arguments for can be obtained by other
approximations, such as assuming that data points lie on a lattice in Rd [34], or by using the non-
rigorous replica method of statistical physics [35–37]. In the case d = 2, we provide a more explicit
mathematical formulation of our results, which leads to analytical results for certain kernels. We
systematically back up our predictions with numerical tests as d varies.

Finally, in the context of image classification, the connection between performance and ‘stability’ or
smoothness toward small diffeomorphisms of the inputs has been conjectured by [28, 38]. Empirically,
a strong correlation between these two quantities was shown to hold across various architectures
for deep networks and real datasets [39]. In that reference, it was found that during training fully
connected networks lose their stability. Here we show that this effect is much less pronounced in the
lazy regime.

2 Problem and notation

Task We consider a supervised learning scenario with n training points {xi}ni=1 uniformly drawn
on the d-dimensional unit sphere Sd−1. We assume that the target function f∗ is an isotropic Gaussian
random process on Sd−1 and control its statistics via the spectrum: by introducing the decomposition
of f∗ into spherical harmonics (see App. A for definitions),

f∗(x) =
∑
k≥0

Nk,d∑
�=1

f∗
k,�Yk,�(x) with E

[
f∗
k,�

]
= 0, E

[
f∗
k,�f

∗
k′,�′

]
= ckδk,k′δ�,�′ . (2.1)

We assume that all the ck with k odd vanish apart from c1: this is required to guarantee that f∗ can be
approximated as well as desired with a one-hidden-layer ReLU network with no biases, as discussed
in App. A. We also assume that the non-zero ck decay as a power of k for k � 1, ck ∼ k−2νt−(d−1).
The exponent νt > 0 controls the (weak) differentiability of f∗ on the sphere (see App. A) and also
the statistics of f∗ in real space:

E
[
|f∗(x)− f∗(y)|2

]
= O

(
|x− y|2νt

)
= O ((1− x · y)νt) as x → y. (2.2)

Neural network representations We consider a one-hidden-layer neural network of width H ,

fξ
H(x) =

1

H1−ξ/2

H∑
h=1

(
whσ(θh · x)− ξw0

hσ(θ
0
h · x)

)
, (2.3)

where {θh}Hh=1 (the features) and {wh}Hh=1 (the weights) are the network parameters to be optimized,{
θ0
h

}H

h=1
and

{
w0

h

}H

h=1
are their values at initialization, ξ is a parameters fixed to ξ = 0 for feature

learning and ξ = 1 for lazy training, and σ(x) denotes the ReLU function, σ(x)=max {0, x}. We
assume that

{
θ0
h, w

0
h

}H

h=1
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Overfitting in Feature Learning

This is the so-called mean-field limit [10, 11], and it is then natural to determine the optimal γ via

γ∗ = argmin
γ

∫

Sd−1

|dγ(θ)| subject to
∫

Sd−1

σ(θ · xi)dγ(θ)=f∗(xi) ∀i = 1, . . . , n. (2.5)

In practice, we can approximate this minimization problem by using a network with large but finite
width, constraining the feature to be on the sphere |θh| = 1, and minimizing the following empirical
loss with L1 regularization on the weights,

min
{wh,θh}H

h=1

|θh|=1

1

2n

n∑
i=1

(
f∗(xi)−

1

H

H∑
h=1

whσ(θh · xi)

)2

+
λ

H

H∑
h=1

|wh|. (2.6)

This minimization problem leads to (2.5) when H → ∞ and λ → 0. Note that, by homogeneity
of ReLU, (2.6) can be shown to be equivalent to imposing a regularization on the L2 norm of all
parameters [31], i.e. the usual weight decay.

To proceed we will make the following assumption about the minimizer γ∗:
Assumption 1. The minimizer γ∗ of (2.5) is unique and atomic, with nA ≤ n atoms, i.e. there exists
{w∗

i ,θ
∗
i }nA

i=1 such that

γ∗ =

nA∑
i=1

w∗
i δθ∗

i
(2.7)

The main component of the assumption is the uniqueness of γ∗; if it holds the sparsity of γ∗ follows
from the representer theorem, see e.g. [32]. Both the uniqueness and sparsity of the minimizer can be
justified as holding generically using asymptotic arguments involving recasting the L1 minimization
problem 2.5 as a linear programming: these arguments are standard (see e.g. [40]) and are presented in
App. B for the reader convenience. In our arguments below to deduce the scaling of the generalization
error we will mainly use that nA = O(n)—we shall confirm this fact numerically even in the absence
of regularization, if the weights are initialized to be small enough.

Lazy Regime (ξ = 1) Assume that θh = θ0
h+H−1/2θ̃h+o(H−1/2) and wh = w0

h+H−1/2w̃h+

o(H−1/2) with {θ0
h, w

0
h, θ̃h, w̃h}Hh=1 drawn independently from a measure dµ(θ0, w0, θ̃, w̃) such

that
∫
Rd θ̃µ(dθ̃, dw̃, ·, ·) = gθ(θ, w)dµ0 and

∫
Rd w̃µ(dθ̃, dw̃, ·, ·) = gw(θ, w)dµ0 exist. Then

lim
H→∞

fξ=1
H (x) =

∫

Sd−1×R
(gw(θ, w)σ(θ · x) + wx · gθ(θ, w)σ′(θ · x)) dµ0(θ, w) a.e. on Sd−1

(2.8)
and it is natural to specify gθ and gw as the minimizer of

min
gw,gθ

∫

Sd−1×R

(
g2w(w,θ) + |gθ(w,θ)|2

)
dµ0(θ, w)

subject to
∫

Sd−1×R
(gw(w,θ)σ(θ · xi) + wxi · gθ(w,θ)σ′(θ · xi)) dµ0(θ, w) = f∗(xi) ∀i = 1, . . . , n.

(2.9)
The solution of Eq. 2.9 coincides with that of kernel ridge regression [41] with the Neural Tangent
Kernel,

KNTK(x · y) =
∫

Sd−1×R

(
σ(θ · x)σ(θ · y) + w2 x · y σ′(θ · x)σ′(θ · y)

)
dµ0(θ, w), (2.10)

Hence the function fNTK(x) obtained by evaluating the right hand side of (2.8) using the minimizer
g∗
θ and g∗w of (2.9) can be conveniently recast, via the kernel trick [41], as

fNTK(x) =

n∑
i=1

giK
NTK(xi · x) with f∗(xj) =

n∑
i=1

giK
NTK(xi · xj), j = 1, . . . , n. (2.11)

Another lazy limit can be obtained equivalently by training only the weights while keeping the
features to their initialization value. This is equivalent to forcing gθ(θ, w) to vanish in Eq. 2.9,
resulting again in a kernel method. The kernel, in this case, is called Random Feature Kernel (KRFK),
and can be obtained from Eq. 2.10 by setting dµ0(θ, w) = δw=0dm0(θ). The minimizer can then be
written as in Eq. 2.11 with KNTK replaced by KRFK.
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Hence the function fNTK(x) obtained by evaluating the right hand side of (2.8) using the minimizer
g∗
θ and g∗w of (2.9) can be conveniently recast, via the kernel trick [41], as

fNTK(x) =

n∑
i=1

giK
NTK(xi · x) with f∗(xj) =

n∑
i=1

giK
NTK(xi · xj), j = 1, . . . , n. (2.11)

Another lazy limit can be obtained equivalently by training only the weights while keeping the
features to their initialization value. This is equivalent to forcing gθ(θ, w) to vanish in Eq. 2.9,
resulting again in a kernel method. The kernel, in this case, is called Random Feature Kernel (KRFK),
and can be obtained from Eq. 2.10 by setting dµ0(θ, w) = δw=0dm0(θ). The minimizer can then be
written as in Eq. 2.11 with KNTK replaced by KRFK.
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This is the so-called mean-field limit [10, 11], and it is then natural to determine the optimal γ via

γ∗ = argmin
γ

∫

Sd−1

|dγ(θ)| subject to
∫

Sd−1

σ(θ · xi)dγ(θ)=f∗(xi) ∀i = 1, . . . , n. (2.5)

In practice, we can approximate this minimization problem by using a network with large but finite
width, constraining the feature to be on the sphere |θh| = 1, and minimizing the following empirical
loss with L1 regularization on the weights,

min
{wh,θh}H

h=1

|θh|=1

1

2n

n∑
i=1

(
f∗(xi)−

1

H

H∑
h=1

whσ(θh · xi)

)2

+
λ

H

H∑
h=1

|wh|. (2.6)

This minimization problem leads to (2.5) when H → ∞ and λ → 0. Note that, by homogeneity
of ReLU, (2.6) can be shown to be equivalent to imposing a regularization on the L2 norm of all
parameters [31], i.e. the usual weight decay.

To proceed we will make the following assumption about the minimizer γ∗:
Assumption 1. The minimizer γ∗ of (2.5) is unique and atomic, with nA ≤ n atoms, i.e. there exists
{w∗

i ,θ
∗
i }nA

i=1 such that

γ∗ =

nA∑
i=1

w∗
i δθ∗

i
(2.7)

The main component of the assumption is the uniqueness of γ∗; if it holds the sparsity of γ∗ follows
from the representer theorem, see e.g. [32]. Both the uniqueness and sparsity of the minimizer can be
justified as holding generically using asymptotic arguments involving recasting the L1 minimization
problem 2.5 as a linear programming: these arguments are standard (see e.g. [40]) and are presented in
App. B for the reader convenience. In our arguments below to deduce the scaling of the generalization
error we will mainly use that nA = O(n)—we shall confirm this fact numerically even in the absence
of regularization, if the weights are initialized to be small enough.
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Figure 2: Feature vs. Lazy Predictor. Predictor of the lazy (left) and feature (right) regime when
learning the constant function on the ring with 8 uniformly-sampled training points.

3 Asymptotic analysis of generalization

In this section we characterise the asymptotic decay of the generalization error ε(n) averaged over
several realizations of the target function f∗,

ε(n) = Ef∗

[∫
dτd−1(x) (fn(x)− f∗(x))2

]
= Adn

−β + o(n−β), (3.1)

for some constant Ad which might depend on d but not on n. Both for the lazy (see Eq. 2.11) and
feature regimes (see Eq. 2.7) the predictor can be written as a sum of O(n) terms:

fn(x) =

O(n)∑
j=1

gjϕ(x · yj) :=

∫

Sd−1

gn(y)ϕ(x · y)dτ(y), (3.2)

where we have defined the density gn(x) =
∑

j |Sd−1|gjδ(x − yj) so as to cast the predictor as
a convolution on the sphere. Therefore, the projections of fn onto spherical harmonics Yk,� read
fn
k,� = gnk,�ϕk, where gnk,� is the projection of gn(x) and ϕk that of ϕ(x · y). For ReLU neurons one

has (as shown in App. A)

ϕLAZY
k ∼ k−(d−1)−2ν with ν = 1/2 (NTK), 3/2 (RFK), ϕFEATURE

k ∼ k−
d−1
2 −3/2. (3.3)

Main Result Consider a target function f∗ with smoothness exponent νt as defined above, with
data lying on Sd−1. If f∗ is learnt with a one-hidden-layer network with ReLU neurons in the regimes
specified above, then the generalization error follows ε(n) ∼ n−β with:

βLAZY =
min {2(d− 1) + 4ν, 2νt}

d− 1
with ν =

{
1/2 for NTK,

3/2 for RFK,
, (3.4a)

βFEATURE =
min {(d− 1) + 3, 2νt}

d− 1
. (3.4b)

This is our central result. It implies that if the target function is a smooth isotropic Gaussian field
(realized for large νt), then lazy beats feature, in the sense that training the network in the lazy regime
leads to a better scaling of the generalization performance with the number of training points.

Strategy There is no general framework for a rigorous derivation of the generalization error in the
ridgeless limit λ → 0: predictions such as that of Eq. 3.4 can be obtained by either assuming that
training points (for Eq. 3.4a) and neurons (for Eq. 3.4b) lie on a periodic lattice [34], or (for Eq. 3.4a)
using the replica method from physics [35] as shown in App. F. Here we follow a different route, by
first characterizing the form of the predictor for d=2 (proof in App. C). This property alone allows
us to determine the asymptotic scaling of the generalization error. We use it to analytically obtain the
test error in the NTK case with a slightly simplified function ϕ (details in App. D). This calculation
motivates a simple ansatz for the form of gn(x) entering Eq. 3.2 and its projections onto spherical
harmonics, which extends naturally to arbitrary dimension. We confirm the predictions resulting from
this ansatz systematically in numerical experiments.
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test error in the NTK case with a slightly simplified function ϕ (details in App. D). This calculation
motivates a simple ansatz for the form of gn(x) entering Eq. 3.2 and its projections onto spherical
harmonics, which extends naturally to arbitrary dimension. We confirm the predictions resulting from
this ansatz systematically in numerical experiments.
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3 Asymptotic analysis of generalization

In this section we characterise the asymptotic decay of the generalization error ε(n) averaged over
several realizations of the target function f∗,

ε(n) = Ef∗

[∫
dτd−1(x) (fn(x)− f∗(x))2

]
= Adn

−β + o(n−β), (3.1)

for some constant Ad which might depend on d but not on n. Both for the lazy (see Eq. 2.11) and
feature regimes (see Eq. 2.7) the predictor can be written as a sum of O(n) terms:

fn(x) =

O(n)∑
j=1

gjϕ(x · yj) :=

∫

Sd−1

gn(y)ϕ(x · y)dτ(y), (3.2)

where we have defined the density gn(x) =
∑

j |Sd−1|gjδ(x − yj) so as to cast the predictor as
a convolution on the sphere. Therefore, the projections of fn onto spherical harmonics Yk,� read
fn
k,� = gnk,�ϕk, where gnk,� is the projection of gn(x) and ϕk that of ϕ(x · y). For ReLU neurons one

has (as shown in App. A)

ϕLAZY
k ∼ k−(d−1)−2ν with ν = 1/2 (NTK), 3/2 (RFK), ϕFEATURE

k ∼ k−
d−1
2 −3/2. (3.3)

Main Result Consider a target function f∗ with smoothness exponent νt as defined above, with
data lying on Sd−1. If f∗ is learnt with a one-hidden-layer network with ReLU neurons in the regimes
specified above, then the generalization error follows ε(n) ∼ n−β with:

βLAZY =
min {2(d− 1) + 4ν, 2νt}

d− 1
with ν =

{
1/2 for NTK,

3/2 for RFK,
, (3.4a)

βFEATURE =
min {(d− 1) + 3, 2νt}

d− 1
. (3.4b)

This is our central result. It implies that if the target function is a smooth isotropic Gaussian field
(realized for large νt), then lazy beats feature, in the sense that training the network in the lazy regime
leads to a better scaling of the generalization performance with the number of training points.

Strategy There is no general framework for a rigorous derivation of the generalization error in the
ridgeless limit λ → 0: predictions such as that of Eq. 3.4 can be obtained by either assuming that
training points (for Eq. 3.4a) and neurons (for Eq. 3.4b) lie on a periodic lattice [34], or (for Eq. 3.4a)
using the replica method from physics [35] as shown in App. F. Here we follow a different route, by
first characterizing the form of the predictor for d=2 (proof in App. C). This property alone allows
us to determine the asymptotic scaling of the generalization error. We use it to analytically obtain the
test error in the NTK case with a slightly simplified function ϕ (details in App. D). This calculation
motivates a simple ansatz for the form of gn(x) entering Eq. 3.2 and its projections onto spherical
harmonics, which extends naturally to arbitrary dimension. We confirm the predictions resulting from
this ansatz systematically in numerical experiments.
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3 Asymptotic analysis of generalization

In this section we characterise the asymptotic decay of the generalization error ε(n) averaged over
several realizations of the target function f∗,

ε(n) = Ef∗

[∫
dτd−1(x) (fn(x)− f∗(x))2

]
= Adn

−β + o(n−β), (3.1)

for some constant Ad which might depend on d but not on n. Both for the lazy (see Eq. 2.11) and
feature regimes (see Eq. 2.7) the predictor can be written as a sum of O(n) terms:

fn(x) =

O(n)∑
j=1

gjϕ(x · yj) :=

∫

Sd−1

gn(y)ϕ(x · y)dτ(y), (3.2)

where we have defined the density gn(x) =
∑

j |Sd−1|gjδ(x − yj) so as to cast the predictor as
a convolution on the sphere. Therefore, the projections of fn onto spherical harmonics Yk,� read
fn
k,� = gnk,�ϕk, where gnk,� is the projection of gn(x) and ϕk that of ϕ(x · y). For ReLU neurons one

has (as shown in App. A)

ϕLAZY
k ∼ k−(d−1)−2ν with ν = 1/2 (NTK), 3/2 (RFK), ϕFEATURE

k ∼ k−
d−1
2 −3/2. (3.3)

Main Result Consider a target function f∗ with smoothness exponent νt as defined above, with
data lying on Sd−1. If f∗ is learnt with a one-hidden-layer network with ReLU neurons in the regimes
specified above, then the generalization error follows ε(n) ∼ n−β with:

βLAZY =
min {2(d− 1) + 4ν, 2νt}

d− 1
with ν =

{
1/2 for NTK,

3/2 for RFK,
, (3.4a)

βFEATURE =
min {(d− 1) + 3, 2νt}

d− 1
. (3.4b)

This is our central result. It implies that if the target function is a smooth isotropic Gaussian field
(realized for large νt), then lazy beats feature, in the sense that training the network in the lazy regime
leads to a better scaling of the generalization performance with the number of training points.

Strategy There is no general framework for a rigorous derivation of the generalization error in the
ridgeless limit λ → 0: predictions such as that of Eq. 3.4 can be obtained by either assuming that
training points (for Eq. 3.4a) and neurons (for Eq. 3.4b) lie on a periodic lattice [34], or (for Eq. 3.4a)
using the replica method from physics [35] as shown in App. F. Here we follow a different route, by
first characterizing the form of the predictor for d=2 (proof in App. C). This property alone allows
us to determine the asymptotic scaling of the generalization error. We use it to analytically obtain the
test error in the NTK case with a slightly simplified function ϕ (details in App. D). This calculation
motivates a simple ansatz for the form of gn(x) entering Eq. 3.2 and its projections onto spherical
harmonics, which extends naturally to arbitrary dimension. We confirm the predictions resulting from
this ansatz systematically in numerical experiments.
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Numerical experiments are performed in PyTorch [29], and the code for reproducing experiments is
available online at github.com/pcsl-epfl/regressionsphere.

1.2 Related Work

The property that training ReLU networks in the feature regime leads to a sparse representation was
observed empirically [30]. This property can be justified for one-hidden-layer networks by casting
training as a L1 minimization problem [31, 2], then using a representer theorem [32, 14, 33].

There is currently no general framework to predict rigorously the learning curve exponent β defined
as ε(n) = O(n−β) for kernels. Some of our asymptotic arguments for can be obtained by other
approximations, such as assuming that data points lie on a lattice in Rd [34], or by using the non-
rigorous replica method of statistical physics [35–37]. In the case d = 2, we provide a more explicit
mathematical formulation of our results, which leads to analytical results for certain kernels. We
systematically back up our predictions with numerical tests as d varies.

Finally, in the context of image classification, the connection between performance and ‘stability’ or
smoothness toward small diffeomorphisms of the inputs has been conjectured by [28, 38]. Empirically,
a strong correlation between these two quantities was shown to hold across various architectures
for deep networks and real datasets [39]. In that reference, it was found that during training fully
connected networks lose their stability. Here we show that this effect is much less pronounced in the
lazy regime.

2 Problem and notation

Task We consider a supervised learning scenario with n training points {xi}ni=1 uniformly drawn
on the d-dimensional unit sphere Sd−1. We assume that the target function f∗ is an isotropic Gaussian
random process on Sd−1 and control its statistics via the spectrum: by introducing the decomposition
of f∗ into spherical harmonics (see App. A for definitions),

f∗(x) =
∑
k≥0

Nk,d∑
�=1

f∗
k,�Yk,�(x) with E

[
f∗
k,�

]
= 0, E

[
f∗
k,�f

∗
k′,�′

]
= ckδk,k′δ�,�′ . (2.1)

We assume that all the ck with k odd vanish apart from c1: this is required to guarantee that f∗ can be
approximated as well as desired with a one-hidden-layer ReLU network with no biases, as discussed
in App. A. We also assume that the non-zero ck decay as a power of k for k � 1, ck ∼ k−2νt−(d−1).
The exponent νt > 0 controls the (weak) differentiability of f∗ on the sphere (see App. A) and also
the statistics of f∗ in real space:

E
[
|f∗(x)− f∗(y)|2

]
= O

(
|x− y|2νt

)
= O ((1− x · y)νt) as x → y. (2.2)

Neural network representations We consider a one-hidden-layer neural network of width H ,

fξ
H(x) =

1

H1−ξ/2

H∑
h=1

(
whσ(θh · x)− ξw0

hσ(θ
0
h · x)

)
, (2.3)

where {θh}Hh=1 (the features) and {wh}Hh=1 (the weights) are the network parameters to be optimized,{
θ0
h

}H

h=1
and

{
w0

h

}H

h=1
are their values at initialization, ξ is a parameters fixed to ξ = 0 for feature

learning and ξ = 1 for lazy training, and σ(x) denotes the ReLU function, σ(x)=max {0, x}. We
assume that

{
θ0
h, w

0
h

}H

h=1
are drawn independently from a distribution µ0 with the properties that: all

moments of µ0 exist; µ0 is absolutely continuous with respect to the Hausdorff measure on Sd−1×R;
and µ0 is centered, i.e.

∫
Sd−1×R θdµ0(θ, w) = 0 and

∫
Sd−1×R wdµ0(θ, w) = 0.

Feature Regime (ξ = 0) If we assume that {θh, wh}Hh=1 are independently drawn from a prob-
ability measure µ on Sd−1 × R such that the Radon measure γ =

∫
R wµ(·, dw) exists, then as

H → ∞
lim

H→∞
fξ=0
H (x) =

∫

Sd−1

σ(θ,x)dγ(θ) a.e. on Sd−1. (2.4)
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3 Asymptotic analysis of generalization

In this section we characterise the asymptotic decay of the generalization error ε(n) averaged over
several realizations of the target function f∗,

ε(n) = Ef∗

[∫
dτd−1(x) (fn(x)− f∗(x))2

]
= Adn

−β + o(n−β), (3.1)

for some constant Ad which might depend on d but not on n. Both for the lazy (see Eq. 2.11) and
feature regimes (see Eq. 2.7) the predictor can be written as a sum of O(n) terms:

fn(x) =

O(n)∑
j=1

gjϕ(x · yj) :=

∫

Sd−1

gn(y)ϕ(x · y)dτ(y), (3.2)

where we have defined the density gn(x) =
∑

j |Sd−1|gjδ(x − yj) so as to cast the predictor as
a convolution on the sphere. Therefore, the projections of fn onto spherical harmonics Yk,� read
fn
k,� = gnk,�ϕk, where gnk,� is the projection of gn(x) and ϕk that of ϕ(x · y). For ReLU neurons one

has (as shown in App. A)

ϕLAZY
k ∼ k−(d−1)−2ν with ν = 1/2 (NTK), 3/2 (RFK), ϕFEATURE

k ∼ k−
d−1
2 −3/2. (3.3)

Main Result Consider a target function f∗ with smoothness exponent νt as defined above, with
data lying on Sd−1. If f∗ is learnt with a one-hidden-layer network with ReLU neurons in the regimes
specified above, then the generalization error follows ε(n) ∼ n−β with:

βLAZY =
min {2(d− 1) + 4ν, 2νt}

d− 1
with ν =

{
1/2 for NTK,

3/2 for RFK,
, (3.4a)

βFEATURE =
min {(d− 1) + 3, 2νt}

d− 1
. (3.4b)

This is our central result. It implies that if the target function is a smooth isotropic Gaussian field
(realized for large νt), then lazy beats feature, in the sense that training the network in the lazy regime
leads to a better scaling of the generalization performance with the number of training points.

Strategy There is no general framework for a rigorous derivation of the generalization error in the
ridgeless limit λ → 0: predictions such as that of Eq. 3.4 can be obtained by either assuming that
training points (for Eq. 3.4a) and neurons (for Eq. 3.4b) lie on a periodic lattice [34], or (for Eq. 3.4a)
using the replica method from physics [35] as shown in App. F. Here we follow a different route, by
first characterizing the form of the predictor for d=2 (proof in App. C). This property alone allows
us to determine the asymptotic scaling of the generalization error. We use it to analytically obtain the
test error in the NTK case with a slightly simplified function ϕ (details in App. D). This calculation
motivates a simple ansatz for the form of gn(x) entering Eq. 3.2 and its projections onto spherical
harmonics, which extends naturally to arbitrary dimension. We confirm the predictions resulting from
this ansatz systematically in numerical experiments.
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implying:

ε(n) =
n−4n5δ5i
240π

lim
n→∞

∫
dx[(fn)′′(x)− (f∗)′′(x)]2 + o(n−4) ∼ 1

n4
(D.9)

where we used that (i) the integral converges to some finite value. From App. C, this integral can be
estimated as

∑
k [cf

∗(k)− k2f∗(k)]2, that indeed converges for νt > 2. (ii) (nδi)5 has a limit for
large n. It is clear for the lazy regime, since the distance between adjacent singularities δi follows an
exponential distribution of mean ∼ 1

n . We expect this result to be also true for the feature regime in
our set-up. Indeed, in the limit n → ∞, the predictor approaches a parabola between singular points,
which generically cannot fit more three random points. There must thus be a singularity at least every
two data-points with a probability approaching unity as n → ∞, which implies that (nδi)5 converges
to a constant for large n.

Finally, for νt < 2, the same decomposition in intervals apply, but a Taylor expansion to second order
does not hold. The error is then dominated by the fluctuations of f∗ on the scale of the intervals, as
indicated in the main text.

E Asymptotic of generalization via the spectral bias ansatz

According to the spectral bias ansatz, the first n modes of the predictor fn
k,� coincide with the modes

of the target function f∗
k,�. Therefore, the asymptotic scaling of the error with n is entirely controlled

by the remaining modes,

ε(n) ∼
∑
k≥kc

Nk,d∑
�=1

(
fn
k,� − f∗

k,�

)2
with

∑
k≤kc

Nk,d ∼ n. (E.1)

Since Nk,d ∼ kd−2 for k � 1, one has that, for large n, kc ∼ n
1

d−1 . After averaging the error over
target functions we get

ε(n) ∼
∑
k≥kc

Nk,d∑
�=1

{
Ef∗

[(
fn
k,�

)2]
+ Ef∗

[(
f∗
k,�

)2]− 2Ef∗
[(
fn
k,�f

∗
k,�

)]}
. (E.2)

Let us recall that, with the predictor having the general form in Eq. 3.2, then

fn
k,� = gnk,�ϕk with gnk,� =

n∑
j=1

gjYk,�(yj), (E.3)

where the yj’s denote the training points for the lazy regime and the neuron features for the feature
regime. For k� kc, where fn

k,� = f∗
k,�, g

n
k,� = f∗

k,�/ϕk. For k� kc, due to the highly oscillating
nature of Yk,�, the factors Yk,�(yj) are essentially decorrelated random numbers with zero mean and
finite variance, since the values of (Yk,�(yj))

2 are limited by the addition theorem Eq. A.5. Let us
denote the variance with σY . By the central limit theorem, gnk,� converges to a Gaussian random
variable with zero mean and finite variance σ2

Y

∑n
j=1 g

2
j . As a result,

ε(n) ∼
∑
k≥kc

Nk,d∑
�=1







n∑
j=1

g2j


ϕ2

k + Ef∗

[(
f∗
k,�

)2]



=




n∑
j=1

g2j


 ∑

k≥kc

Nk,dϕ
2
k +

∑
k≥kc

Nk,dck,

(E.4)

where we have used the definition of f∗ (Eq. 2.1) to set the expectation of (f∗
k,�)

2 to ck.
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3 Asymptotic analysis of generalization

In this section we characterise the asymptotic decay of the generalization error ε(n) averaged over
several realizations of the target function f∗,

ε(n) = Ef∗

[∫
dτd−1(x) (fn(x)− f∗(x))2

]
= Adn

−β + o(n−β), (3.1)

for some constant Ad which might depend on d but not on n. Both for the lazy (see Eq. 2.11) and
feature regimes (see Eq. 2.7) the predictor can be written as a sum of O(n) terms:

fn(x) =

O(n)∑
j=1

gjϕ(x · yj) :=

∫

Sd−1

gn(y)ϕ(x · y)dτ(y), (3.2)

where we have defined the density gn(x) =
∑

j |Sd−1|gjδ(x − yj) so as to cast the predictor as
a convolution on the sphere. Therefore, the projections of fn onto spherical harmonics Yk,� read
fn
k,� = gnk,�ϕk, where gnk,� is the projection of gn(x) and ϕk that of ϕ(x · y). For ReLU neurons one

has (as shown in App. A)

ϕLAZY
k ∼ k−(d−1)−2ν with ν = 1/2 (NTK), 3/2 (RFK), ϕFEATURE

k ∼ k−
d−1
2 −3/2. (3.3)

Main Result Consider a target function f∗ with smoothness exponent νt as defined above, with
data lying on Sd−1. If f∗ is learnt with a one-hidden-layer network with ReLU neurons in the regimes
specified above, then the generalization error follows ε(n) ∼ n−β with:

βLAZY =
min {2(d− 1) + 4ν, 2νt}

d− 1
with ν =

{
1/2 for NTK,

3/2 for RFK,
, (3.4a)

βFEATURE =
min {(d− 1) + 3, 2νt}

d− 1
. (3.4b)

This is our central result. It implies that if the target function is a smooth isotropic Gaussian field
(realized for large νt), then lazy beats feature, in the sense that training the network in the lazy regime
leads to a better scaling of the generalization performance with the number of training points.

Strategy There is no general framework for a rigorous derivation of the generalization error in the
ridgeless limit λ → 0: predictions such as that of Eq. 3.4 can be obtained by either assuming that
training points (for Eq. 3.4a) and neurons (for Eq. 3.4b) lie on a periodic lattice [34], or (for Eq. 3.4a)
using the replica method from physics [35] as shown in App. F. Here we follow a different route, by
first characterizing the form of the predictor for d=2 (proof in App. C). This property alone allows
us to determine the asymptotic scaling of the generalization error. We use it to analytically obtain the
test error in the NTK case with a slightly simplified function ϕ (details in App. D). This calculation
motivates a simple ansatz for the form of gn(x) entering Eq. 3.2 and its projections onto spherical
harmonics, which extends naturally to arbitrary dimension. We confirm the predictions resulting from
this ansatz systematically in numerical experiments.
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Numerical experiments are performed in PyTorch [29], and the code for reproducing experiments is
available online at github.com/pcsl-epfl/regressionsphere.

1.2 Related Work

The property that training ReLU networks in the feature regime leads to a sparse representation was
observed empirically [30]. This property can be justified for one-hidden-layer networks by casting
training as a L1 minimization problem [31, 2], then using a representer theorem [32, 14, 33].

There is currently no general framework to predict rigorously the learning curve exponent β defined
as ε(n) = O(n−β) for kernels. Some of our asymptotic arguments for can be obtained by other
approximations, such as assuming that data points lie on a lattice in Rd [34], or by using the non-
rigorous replica method of statistical physics [35–37]. In the case d = 2, we provide a more explicit
mathematical formulation of our results, which leads to analytical results for certain kernels. We
systematically back up our predictions with numerical tests as d varies.

Finally, in the context of image classification, the connection between performance and ‘stability’ or
smoothness toward small diffeomorphisms of the inputs has been conjectured by [28, 38]. Empirically,
a strong correlation between these two quantities was shown to hold across various architectures
for deep networks and real datasets [39]. In that reference, it was found that during training fully
connected networks lose their stability. Here we show that this effect is much less pronounced in the
lazy regime.

2 Problem and notation

Task We consider a supervised learning scenario with n training points {xi}ni=1 uniformly drawn
on the d-dimensional unit sphere Sd−1. We assume that the target function f∗ is an isotropic Gaussian
random process on Sd−1 and control its statistics via the spectrum: by introducing the decomposition
of f∗ into spherical harmonics (see App. A for definitions),

f∗(x) =
∑
k≥0

Nk,d∑
�=1

f∗
k,�Yk,�(x) with E

[
f∗
k,�

]
= 0, E

[
f∗
k,�f

∗
k′,�′

]
= ckδk,k′δ�,�′ . (2.1)

We assume that all the ck with k odd vanish apart from c1: this is required to guarantee that f∗ can be
approximated as well as desired with a one-hidden-layer ReLU network with no biases, as discussed
in App. A. We also assume that the non-zero ck decay as a power of k for k � 1, ck ∼ k−2νt−(d−1).
The exponent νt > 0 controls the (weak) differentiability of f∗ on the sphere (see App. A) and also
the statistics of f∗ in real space:

E
[
|f∗(x)− f∗(y)|2

]
= O

(
|x− y|2νt

)
= O ((1− x · y)νt) as x → y. (2.2)

Neural network representations We consider a one-hidden-layer neural network of width H ,

fξ
H(x) =

1

H1−ξ/2

H∑
h=1

(
whσ(θh · x)− ξw0

hσ(θ
0
h · x)

)
, (2.3)

where {θh}Hh=1 (the features) and {wh}Hh=1 (the weights) are the network parameters to be optimized,{
θ0
h

}H

h=1
and

{
w0

h

}H

h=1
are their values at initialization, ξ is a parameters fixed to ξ = 0 for feature

learning and ξ = 1 for lazy training, and σ(x) denotes the ReLU function, σ(x)=max {0, x}. We
assume that

{
θ0
h, w

0
h

}H

h=1
are drawn independently from a distribution µ0 with the properties that: all

moments of µ0 exist; µ0 is absolutely continuous with respect to the Hausdorff measure on Sd−1×R;
and µ0 is centered, i.e.

∫
Sd−1×R θdµ0(θ, w) = 0 and

∫
Sd−1×R wdµ0(θ, w) = 0.

Feature Regime (ξ = 0) If we assume that {θh, wh}Hh=1 are independently drawn from a prob-
ability measure µ on Sd−1 × R such that the Radon measure γ =

∫
R wµ(·, dw) exists, then as

H → ∞
lim

H→∞
fξ=0
H (x) =

∫

Sd−1

σ(θ,x)dγ(θ) a.e. on Sd−1. (2.4)
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Overfitting in Feature Learning

Numerical experiments are performed in PyTorch [29], and the code for reproducing experiments is
available online at github.com/pcsl-epfl/regressionsphere.

1.2 Related Work

The property that training ReLU networks in the feature regime leads to a sparse representation was
observed empirically [30]. This property can be justified for one-hidden-layer networks by casting
training as a L1 minimization problem [31, 2], then using a representer theorem [32, 14, 33].

There is currently no general framework to predict rigorously the learning curve exponent β defined
as ε(n) = O(n−β) for kernels. Some of our asymptotic arguments for can be obtained by other
approximations, such as assuming that data points lie on a lattice in Rd [34], or by using the non-
rigorous replica method of statistical physics [35–37]. In the case d = 2, we provide a more explicit
mathematical formulation of our results, which leads to analytical results for certain kernels. We
systematically back up our predictions with numerical tests as d varies.

Finally, in the context of image classification, the connection between performance and ‘stability’ or
smoothness toward small diffeomorphisms of the inputs has been conjectured by [28, 38]. Empirically,
a strong correlation between these two quantities was shown to hold across various architectures
for deep networks and real datasets [39]. In that reference, it was found that during training fully
connected networks lose their stability. Here we show that this effect is much less pronounced in the
lazy regime.

2 Problem and notation
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on the d-dimensional unit sphere Sd−1. We assume that the target function f∗ is an isotropic Gaussian
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f∗(x) =
∑
k≥0

Nk,d∑
�=1

f∗
k,�Yk,�(x) with E

[
f∗
k,�

]
= 0, E

[
f∗
k,�f

∗
k′,�′

]
= ckδk,k′δ�,�′ . (2.1)

We assume that all the ck with k odd vanish apart from c1: this is required to guarantee that f∗ can be
approximated as well as desired with a one-hidden-layer ReLU network with no biases, as discussed
in App. A. We also assume that the non-zero ck decay as a power of k for k � 1, ck ∼ k−2νt−(d−1).
The exponent νt > 0 controls the (weak) differentiability of f∗ on the sphere (see App. A) and also
the statistics of f∗ in real space:

E
[
|f∗(x)− f∗(y)|2

]
= O

(
|x− y|2νt

)
= O ((1− x · y)νt) as x → y. (2.2)
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fξ
H(x) =

1

H1−ξ/2

H∑
h=1

(
whσ(θh · x)− ξw0

hσ(θ
0
h · x)

)
, (2.3)

where {θh}Hh=1 (the features) and {wh}Hh=1 (the weights) are the network parameters to be optimized,{
θ0
h

}H

h=1
and

{
w0

h

}H

h=1
are their values at initialization, ξ is a parameters fixed to ξ = 0 for feature

learning and ξ = 1 for lazy training, and σ(x) denotes the ReLU function, σ(x)=max {0, x}. We
assume that

{
θ0
h, w

0
h

}H

h=1
are drawn independently from a distribution µ0 with the properties that: all

moments of µ0 exist; µ0 is absolutely continuous with respect to the Hausdorff measure on Sd−1×R;
and µ0 is centered, i.e.

∫
Sd−1×R θdµ0(θ, w) = 0 and

∫
Sd−1×R wdµ0(θ, w) = 0.

Feature Regime (ξ = 0) If we assume that {θh, wh}Hh=1 are independently drawn from a prob-
ability measure µ on Sd−1 × R such that the Radon measure γ =

∫
R wµ(·, dw) exists, then as

H → ∞
lim

H→∞
fξ=0
H (x) =

∫

Sd−1

σ(θ,x)dγ(θ) a.e. on Sd−1. (2.4)

3

ft f(ϑ)

tangent space parameters space

f(ϑ)ft

tangent space

parameters spaceparameters space

xi,c → → 〈wc, h(xi,c)〉+ bc· · ·
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(linear subspace) (manifold of diffeo, locally around data-points)
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Compression Ratio R ∼ 1/p ?

Table 1: Comparison: Stripe Model vs. real data.
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Table 2: Test error vs. stability: correlation coefficients for different
data sets.

dataset Df Gf Rf

MNIST 0.71 -0.43 0.75
SVHN 0.87 -0.28 0.81

FashionMNIST 0.72 -0.68 0.94
tinyImageNet 0.69 -0.66 0.74

x → → f(x)

{θh}Hi=1 {wh}Hi=1

σ(·)
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Overfitting in Feature Learning

This is the so-called mean-field limit [10, 11], and it is then natural to determine the optimal γ via

γ∗ = argmin
γ

∫

Sd−1

|dγ(θ)| subject to
∫

Sd−1

σ(θ · xi)dγ(θ)=f∗(xi) ∀i = 1, . . . , n. (2.5)

In practice, we can approximate this minimization problem by using a network with large but finite
width, constraining the feature to be on the sphere |θh| = 1, and minimizing the following empirical
loss with L1 regularization on the weights,

min
{wh,θh}H

h=1

|θh|=1

1

2n

n∑
i=1

(
f∗(xi)−

1

H

H∑
h=1

whσ(θh · xi)

)2

+
λ

H

H∑
h=1

|wh|. (2.6)

This minimization problem leads to (2.5) when H → ∞ and λ → 0. Note that, by homogeneity
of ReLU, (2.6) can be shown to be equivalent to imposing a regularization on the L2 norm of all
parameters [31], i.e. the usual weight decay.

To proceed we will make the following assumption about the minimizer γ∗:
Assumption 1. The minimizer γ∗ of (2.5) is unique and atomic, with nA ≤ n atoms, i.e. there exists
{w∗

i ,θ
∗
i }nA

i=1 such that

γ∗ =

nA∑
i=1

w∗
i δθ∗

i
(2.7)

The main component of the assumption is the uniqueness of γ∗; if it holds the sparsity of γ∗ follows
from the representer theorem, see e.g. [32]. Both the uniqueness and sparsity of the minimizer can be
justified as holding generically using asymptotic arguments involving recasting the L1 minimization
problem 2.5 as a linear programming: these arguments are standard (see e.g. [40]) and are presented in
App. B for the reader convenience. In our arguments below to deduce the scaling of the generalization
error we will mainly use that nA = O(n)—we shall confirm this fact numerically even in the absence
of regularization, if the weights are initialized to be small enough.

Lazy Regime (ξ = 1) Assume that θh = θ0
h+H−1/2θ̃h+o(H−1/2) and wh = w0

h+H−1/2w̃h+

o(H−1/2) with {θ0
h, w

0
h, θ̃h, w̃h}Hh=1 drawn independently from a measure dµ(θ0, w0, θ̃, w̃) such

that
∫
Rd θ̃µ(dθ̃, dw̃, ·, ·) = gθ(θ, w)dµ0 and

∫
Rd w̃µ(dθ̃, dw̃, ·, ·) = gw(θ, w)dµ0 exist. Then

lim
H→∞

fξ=1
H (x) =

∫

Sd−1×R
(gw(θ, w)σ(θ · x) + wx · gθ(θ, w)σ′(θ · x)) dµ0(θ, w) a.e. on Sd−1

(2.8)
and it is natural to specify gθ and gw as the minimizer of

min
gw,gθ

∫

Sd−1×R

(
g2w(w,θ) + |gθ(w,θ)|2

)
dµ0(θ, w)

subject to
∫

Sd−1×R
(gw(w,θ)σ(θ · xi) + wxi · gθ(w,θ)σ′(θ · xi)) dµ0(θ, w) = f∗(xi) ∀i = 1, . . . , n.

(2.9)
The solution of Eq. 2.9 coincides with that of kernel ridge regression [41] with the Neural Tangent
Kernel,

KNTK(x · y) =
∫

Sd−1×R

(
σ(θ · x)σ(θ · y) + w2 x · y σ′(θ · x)σ′(θ · y)

)
dµ0(θ, w), (2.10)

Hence the function fNTK(x) obtained by evaluating the right hand side of (2.8) using the minimizer
g∗
θ and g∗w of (2.9) can be conveniently recast, via the kernel trick [41], as

fNTK(x) =

n∑
i=1

giK
NTK(xi · x) with f∗(xj) =

n∑
i=1

giK
NTK(xi · xj), j = 1, . . . , n. (2.11)

Another lazy limit can be obtained equivalently by training only the weights while keeping the
features to their initialization value. This is equivalent to forcing gθ(θ, w) to vanish in Eq. 2.9,
resulting again in a kernel method. The kernel, in this case, is called Random Feature Kernel (KRFK),
and can be obtained from Eq. 2.10 by setting dµ0(θ, w) = δw=0dm0(θ). The minimizer can then be
written as in Eq. 2.11 with KNTK replaced by KRFK.
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